HEAT AND MASS TRANSFER DURING SUBLIMATION
AND CONDENSATION IN A CONICAL ANNULUS

P. A. Novikov, L. Ya. Lyubin, UDC 536.422
and E. K. Snezhko

A solution is given for thermostatic control of conical and spherical objects under condi-
tions of one-gided radiative heating in a vacuum.

We have [1] considered a cylindrical heat-transmitting ring rotating around an axis as a means of
efficient thermostatic control for an object subject to one-sided heating in a vacuum.

Congiderable practical interest attaches also to conical and spherical heat-transmitting elements
working under similar conditions (rotating ring screens).

Congider a thermostat constructed as two identical conical shells (Fig. 1a) having a common base (it
-is agsumed that the base is ideally insulated in discussing one of these shells, in order to eliminate and
effects). Each shell consists of two thin-walled components, the gap between which is free from noncon-
dengable gases and filled with a certain amount of working body, whose triple point lies above the tem-
peratures maintained in the thermostatic ring.

The thermostat rotates in a vacuum around its axis OO, and is exposed to a parallel beam of short-
wave radiation perpendicular to that axis; the outer skin radiates in accordance with Stefan's law into outer
space, so the resultant heat flux through the outer skin is
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The outer skin is coated on the inside with a layer of solid condensate; the rate of the phase transition in

the absence of heat transfer at the inner surface is

7, = %_ m(c’p/(sr_zcwpwéw) . d;(': . @)

It is assumed that the heat flow along the jacket is negligible by comparison with the heat transfer due
to the phase trangitions, and also that the gap 2h between the skins is relatively narrow: h/r, < 1 (Fig. 1).
Then the parameters of the sublimate flowing in the gap can be characterized by a potential ¢, whichis in-
troduced as in [2]; to determine this we consider the median surface of the conical slot and bring it into
coincidence with the complex plane Z = rexp(iy), where y = gsinp (Fig. 2). We follow [2] and put
J4
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In (3) we have neglected the additional speed of the sublimate due {o
the rotation of the ring channel, since the angular velocity of the latter re-
quired for reliable operation is only small: w < V/(rysing).

The temperature of the outer surface of the gkin Ty, is related fo T(p)
= T,F (p) at the phase-transition surface by

8, . ¥
Ty—T(p) =Ry Ry= %+

. )
hy N

The use of ¥ enables us to describe the flow in the slot by means of
3), which contains small nonlinearity on the right, which is due to the tem-
perature dependence of the specific heat flux q. For this reason, TfN is best
expanded as a Taylor series around some value T3; we put t{p) = T(p)—Ty;
t(p) « Ty, and if we regtrict consideration to the first two terms, we get from
(1) and (4) that

AE cos Bf (¢) — eaT5 [1 - 4¢ (p)/T,] 5)
1+ 4eoTiR,, ’
Fig. 1. Calculation of a (0 for @ <<m/2andp > 3m/2,
thermostatic jacket: a) fe) = | —cosg  for m/2< @< 3m/2.

conical; b) spherical. As Ap/T0 -dT/dp <« 1 (ap is the pressure difference in the gap), we have
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Since the second term on the right in (2) is negligible, as we shall see subsequently, if L. and, algo,
w are small (provided the values are suffficient for efficient operation), weuse (2),(5), and (6) to express (3) as

V¥ = D+ eHNY — MHAE cos Bf (g). (7)
Here
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We can consider the flow of sublimate as symmetrical with respect to the meridional plane passing
through the generator ¢ =0, i.e., ¥ should satisfy the boundary conditions

O¥/y =0 for y=Oand for y = msinp. (8)

As the flows are symmetrical with respect to the plane r = ry, we have
OW/or =0 for r=r, 9
To solve the boundary-value problem of (7)-(9) we pefform a conformal mapping of the sector 0 < r

<rg; |yl < msing on a circle of radius ryy = r5118, by means of the analytical function 7, = z1/sinB, Z4
= ryexp (iyy); ry = I'i/smBQ Yy = v/sing = ¢.

Then Z, = rexp (ip); since

dz,  ri-sm
dz~ T Tsinp
(7) becomes
V%‘I’ = rl_g““s“‘msin2 B (D -+ eHNY — MHA,E cos Bf (¢)], (10)
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g It is shown below that Nrj « 1 for modes of operation of practical interest,
’ so0 ¥ is sought as an expansion (N, = Nr)

¥ =99 L N L NTP 1y

The function () should satisfy (9) and Poisson's equation

ViV 0B gD MHA, E cos Bf (¢)]. (12)

>

The potential ¥©) will be sought in the form ¥ ©) = ¥0) + ¥ @), where ¥ ) is
a particular solution to (12) and \1'1(0) is a function harmonic in the Z, plane that
satisfies the following condition at r; = ry;

W% /or, = — 0¥ jor, . (13)

To determine ¥{) we expand f(p) as a Fourier series:

Fig. 2. Coincidence RN _ 1 1 2 (— 1)
of the median surface Fo) = }_J a, cos (ng); a,= P & = g Qg = ‘(4k-a_ Hx
of a slot channel with 0

the Z plane. Q=0 k=12 ...

Then ¥®) may be put as the series

O _ w2p N (0)
W = sin®f }d b, %o ,

n=:1

b, = — MHAEa, cosf; yiW = r2) o5 (ng).
Since we have that B
R SRR A
the latter equation can be put in complex form:
d d‘l"g?,’ 1 ( Z7/21sing ’ Zntsing
dz,  dz, 8 \ Zpiml T T gndi—sing )

We integrate the right side successively with respect to Z, and Z4 to obtain

1 1 i+ o 71" cos (ng) (14)
2 n*—4sintp  (Z,Z)0 n*—4sin?f

0
‘P(()n) =

For 8=n/6 at n =1 a solution in the form of (14) would be meaningless, and in that case

1 VAd r .
o _ - ( _) = % (Inrycos ¢ -+ @sing).
¥y 3 134 Z 2 ( 1 ¢ 2 P

If 8 = /6, then \llfo) is sought in the same form as \1"(8), i.e.,
w0 —sintp ¥ b, V1Y .

Here \Iﬂﬁ’l) are harmonic functiong that satisfy the following condition at ry = ry;:

vy ovs)  2sinprig™ ! cos (ng)

ar, ory n*— 4 sin® B

Then
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Consequently, for 8 = 7/6 we have

, - br3sin*B [ 2sinp /r \wsinb ;s p\2]
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n*—4 sin?p l n 7 o/

For the case 8 = 1/6 we determine \'lli(O)from the boundary condition at ry = ry, which involves a Fourier
expansion of gsing; in other respects, the procedure for finding \11(‘%) does not differ from the general case.
We then have the final result for 8 =7/6:

2 ‘ 2 r 1
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The determination of all the subsequent @(k) resembles that of ¢0) iy amounting to solution of a Pois-
son equation whose right side containg the functions derived in the preceding stages; the boundary condi-
tions for E)\lf(k)/ar1 remain homogeneous as before, so all the terms in the agymptotic expansion of (11) can
be determined by the above scheme. For instance, if we substitute (15) oato the right in {10) we get for

8 = 7/6

M ; > b, B ., _ —=
d ] d‘P— _ eH 5411’145 E _m_ Ia” (Z, Zl) a2y Z1) — o {Zy, Z) —p (24, Zy) JI ,
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o 7 1 1n/2--25inf—1 Z2sinf —1—n /2
Ol Z)) = W 1 A )
Smﬁ Zn— 1-=sinf Z-»(i smB)

o (Zy, Z,) = i,

The solution at r, = ry; to the condition a\'y(i)/arl =0 for the latter equation takes the form

" eH sm4 prs {ﬂ b, 1 (LY/S‘“H?; 2 (_r_)‘*
v ‘-J nt—4sinf | n(p-+sinp)y \ rg, " n—16 sin*B

| n=2 sinp 8sinf ] (L>n:’sinﬁ} cos (mp}. (16)
nt{n - sinP) n(n2—16 sin?f) j \ r

We determine the unknown temperature of the sublimate at r = ry, ¢ =0 [T(ry; 0) = Tg; ¥(ry, 0) = Y]
by equating to zero the integral over the surface of the cone (0 <¢ < 27, 0 < r <rj) on the right in (10),
which is proportional to the specific heat flux to the outer skin; we use (15) to get the following tran-
scendental equationaccurateup to Ny = riN for this case [N, = Ny(T;)]:

’ AE cosB . o 1 vy (— 1y
Th= =220 | | — N eH sin? }
’ aeo { o sinp { 2(1=2snp) \ )

od (4B 1) ( km sinf) &

As in the derivation of (7), we neglect the second term on the right in (2) to get the equation for the
stationary desublimate distribution:

@ g
do wlp’ ’
Consequently,
.o . HAFEcos (
6:607‘—'—7—5‘ (i*fx(@)]*o(/\’a), (18)
wolp o
fe) = | 0 for 0<<q<Tq1/22nd37/2 << 2m,
' [l —sing for @/2<q<<3m/2.

By virtue of (6), the maximum temperature difference at the sublimation surface is
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AT =T (ryy 7)—T (ry, 0).= —

As an illustration we consider a conical thermostat rotating around an axis perpendicular to the solar
radiation flux (E = 1392 W/m?); with Ag = 0.15, € = 0.18, B =%/4,and Ry =0, Ty = [1 +0(N;)]-260°K, and if
the working body is water (L = 3.06- 10° J/kg, R = 461.36 m®/sec®°K, 4 = 0.81-10= N-.sec/m?), then P,
~ 182 N/m?, and for ry = 2 m, 2h = 10 and 20 mm the dimensionless parameter Ny =3.78- 10-3 and 4,73
1074, while the error in the thermostatic control can be estimated in terms of the maximum temperature
differences AT = 0.123°K and 0.0154°K, respectively.

If we neglect quantities of order Nj, we find that for r = r; the maximum and minimum in the thick-
ness 6' of the layer of desublimate correspond to the following angles: ¢ = arccos (~1/1) and ¢ =27 —
arc cos (=1/ m): '

Spex = 8+ 0,545 _HAECOSB o o 0545 HAECOSP
olp olp’ )

If ' is not to vary with ¢ by more than §;—6], the thermostat must rotate with the angular velocity

HAE cos B

— 20
Lop" (6:—61) )

0 > o, ~ 1,09

The minimum necessary angular velocities for R, =0 H =1), 8= 7/ 4,and 6;—6; = 0,05,0.10,and 1.00
mm are wy = 9.95* 10’4, 5.25 - 10'4,and 0.525 10~ sec 1, i.e., the thermostat must perform a rotation in
time intervals not exceeding 1.655, 3.31, and 33.1 h, respectively.

We use (3), (5), (6), and (20) to estimate the ratio of the second term on the right in (2), which char-
acterizes the thermal inertia of the layer of desublimate (and skins), to the first term, which characterizes
the heat input:

® (€08 +- €,,Pu0y) AT /de N ¢'8,RTopr sin® BHAE (1_1_ cwpw(‘iw) cosp
q D@ (p) @8R\ 'y '

For water with 6;—6] = 0(6), A; = 0.15, 8 = n/4, &€ = 0.18 (T, = 260°K), Ry, = 0(H = 1), cy,P 5Oy /c'p 5! —
0, E = 1392 W/m?, T, = 2m, and 2h =10 and 20 mm, and we have, respectively, £ ~0.0034 and 0.00043,

The above case corresponds to constant height of the slot between conical sking, and it represents a
monotonic increase in the temperature differences AT(r) = T(r, m)—T(r, 0) as one recedes from the vertex
of the cone (as r increases); the thermodynamic parameters of the sublimate are uniquely related to ¥
(apart from an additive congstant), and they are dependent not only on ¢ but also on r.

The dependence of ¥ and AT on r can be eliminated by appropriate shaping of the slot; if Kn < 0.01,
we can neglect the effects of slip, and for Ah = 0 we have (3) for ¥ in the following form [2]:

3ud, p
oY) = — - B (p) = ——
v (#*gY¥) 5 ) ®T

We seek the gap profile in the form h = h, (ri/rm)n; then in place of (10) we have in the Z, plane that

*Y _6_2‘!;_ = (Bn 4D L. (o thy)® risiob—3n Dy e AN, W—M,HA,E cos Bf (g)]. 21)

o an or,

Here D, = h°D, N; = h®N, M, = h®M, 8D,/6h = 0, 8N,/8h = 0, OM/0h = 0; if the solution to (21) that satis-
fies (9) is not be to dependent on r, we should put n = (2 sing)/3, i.e., h = hy(r/r,)*/3.

Similarly, we canconsider the phase transition in the relatively narrow gap 2h between two spherical
skins whose radii are r,—h and r, + h (b/r, « 1); the conditions for external heat transfer are assumed to be
the same as in the conical skins, i.e.,

—eoTh for 0<op<<a/2, 22)
—eoT?, —AEcosg for m/2<{op<m.
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The potential ¥ (introduced above) here should satisfy the equation of conservation of matter (symbols
as before):

32, 1 d ( d )
K== X=amg

(23)
Equations (7) and (8) will now give

K¥ = 2 (D -+ eHNY — MHAEF ()], (24)

0¥/0p =0 for ¢ =0andfor @ =. (25)

The potential ¥ is sought in the form of (11); ¥©) is a solution to

KO = D — MHAEf(¢)]; 0%/dp=0 for =0, m.

(26)
Then

SulHAE
¥ (@) =¥ () — 5 L)

@27
. ( )_j In cos (9/2) for 0<gp<<mn/2,
B Insin(¢/2) +cos@  for m/2<<q<m.

The derivation of all the subsequent +® amounts to solv ing analogous problems ky® = cgok- 0,
av K /ap = 0 for @ = 0; .

*

For instance,

AureHAE
Ui a,
¥ (@) =¥ (0) — s F (@),

21 (cos ¢/2) — (In 2—-1/2) In (cos ¢/2) (0< o< % ,
Flo) =

o i e

{28)
o1 (sin ¢/2) — (In 2— 1/2) In (sin ¢/2) - C"% ( i

.
I(a):L}P xlnx dx.

1—x2

The maximum temperature difference at the sublimation surface is

SoursRT5eH o |
QN T,
Blpdy 0|

3ursRTiHAE [
AT = s
d 4L%p,@ (py) B :

(29)

The thermodynamic parameters [p), ®(py)] can be determined from the Clausius—Clapeyron equation,
as (3) shows, if we use

4

T, = AE [1_ Noef

. 3 ,

— 2 L 0NHY. (30)
I (1 220 (2 3 00
One cannot maintain steady thermostatic conditions by virtue of phase transitions indefinitely long in
a spherical gap by rotating a sphere around a single axis, on account of change in the conditions for exter-
nal heat transfer along the generators; such a thermostat can work in pulse mode, i.e., for a finite time £
corresponding to elimination of the desublimate layer at the point ¢ = 7 for w =0 or along a great circle on

the spherical surface in the plane of rotation if w is large enough. If we neglect quantities of the order of
Ny, the time t, for the above cases is defined as follows:

T pLd, s l
t;:—g—- m‘* for (.0—0, tl——m
% pLs, 2n

fi — .
HAE or @ > 7
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Here 6x is the initial thickness of the desublimate layer. The thermostatic control may be considered as

continuous if within time intervals t, < Y] there is a change in the orientation of the axis of rotation with
'

respect to the plane of rotation for w > 2n/t,.

NOTATION
T, @ are spherical coordinates of points on the median slot channel surface;
28 is the angle at cone apex;
2h . ig the slot channel height;
Z = rel” and Zy = r1e1¢ are the points on corresponding complex planes;
Ty, Tp), Tm are the temperatures of external thermostat surface, saturation tempera-

ture at pressure p, and temperature averaged over the degublimate layer
plus over outer shell, respectively;

q is the heat flux density at outer shell, W/m?;

E is the shortwave radiation flux density, W/m?;

Ag, € are the shortwave radiation absorption factor and emissivity of external

surface;

o is Stefan's constant;

¢, 0, 6", (e O Ow) are the specific heat, density, and thicknes s of desublimate layer (outer
; shell), respectively;

L is the latent heat of sublimation; J/kg;

p is the pressure, N/m?;

px, Tx are the sublimate parameters at triple point;

R is the gas constant of sublimate, m¥sec?-°K (J/kg - °K);

Ays M are the thermal conductivities of outer shell and desublimate layer, respec-

tiVely, W/m . OK;
is the complex conjugate of a.

]|
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